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Big picture

» We study dynamical systems characterized by their varying
state x;.

» We do not have direct access to those states. We can observe
them through an observation process y; ~ O(xt).

» We study models of physical systems defined by a set of ODEs
that characterizes the transition model x;+1 ~ M(x;).
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Formulation

In our setup
» M(.) is deterministic
> O(.) is linear w.r.t. x; and Gaussian s.t. y; ~ N(Ax;, X))

Unlike classical point estimation, we target the full posterior
distribution p(x | yt—T.¢, t) to incorporate uncertainty in the
inference process.
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Classical SBI vs Data assimilation

p(6 | x) [p(x [y 1. t)]
p(x | 0)p(0) P(ye—T:¢ | x, t)p(x | t)
p(x) pP(ye-T:t | t)
» x is an observation P> X is a state
» @ is a parameter or a variable » y is an observation
of interest > ¢ is the time index
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Challenges

p(yt—T:t | X, t)p(X ‘ t)
p(ye—T:t | t)

p(x | ye—T:t,t) =

» Time-varying posterior
» Scale of the problem

» Need proper evaluation of the estimator
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Estimation methods

p(ye—1:t | x, t)p(x | t)
X T, t) =
PclyeTe ) Pyt | 1)
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Estimation methods

p(x | ye—Tt,t) =

p(Ye—T:t | X, t)

p(Ye—T:t | t)

p(x | t)

Linked to the likelihood-to-evidence ratio

» Direct posterior estimation

» Neural ratio estimation
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Estimation methods

Plx|yeTet) =

p(yt—T:t ’ t)

p(yt—T:t | X, t)

p(x | t)

Density estimator as posterior surrogate

» Direct posterior estimation
» Neural ratio estimation

» Neural posterior estimation
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Estimation methods

el xt
o] x| ve ) = | BT 0D

P(}/t— T:t | t)

Use SDE to reconstruct samples by estimating
VX(T) log p(X(T) | Yt—T:t t)

Direct posterior estimation
Neural ratio estimation
Neural posterior estimation

Posterior score estimation

vVvYyyvy

Composed score estimation
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Simulators

Chaotic systems
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Figure 1: 1D - Lorenz96

Used as a toy problem to

benchmark different estimators.

We gradually increase the
problem scale from 8 to 256
nodes.

Figure 2: 2D - Turbulent flows

Used to push the scaling of our
methods at much higher
dimensions. This system is more
physically realistic. We scale to
2048 nodes.
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Comparison of considered techniques
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Comparison of considered techniques
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Results

AUC
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Discussion

» We have to incorporate as much information as we have access
to in our estimators.

» Convolutional architectures are preferred for good scaling.
They are relevant regarding the data structure.

» Score-based models are promising despite they have certain
defects.

» Convolutional flows must be further tested.

v

It is of interest to study the impact of the time embedding.

» How can we adapt those methods to real-world scenarios with
potential misspecified models ?
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Any questions ?
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