Data assimilation as simulation-based inference

Andry Gérôme

University of Liège

Master's thesis presentation (2022-2023)

Introduction

Task description Inference for data assimilation

Adapting the SBI framework

Duality Challenges

Posterior estimation

Estimation methods

Experiments

Evaluation techniques Results

Introduction Task description Inference for data assimilation

Adapting the SBI framework

Posterior estimation

Experiments

Big picture

- We study dynamical systems characterized by their varying state x_t.
- We do not have direct access to those states. We can observe them through an observation process $y_t \sim \mathcal{O}(x_t)$.
- ▶ We study models of physical systems defined by a set of ODEs that characterizes the transition model x_{t+1} ~ M(x_t).

Formulation

In our setup

- $\mathcal{M}(.)$ is deterministic
- $\mathcal{O}(.)$ is linear w.r.t. x_t and Gaussian s.t. $y_t \sim \mathcal{N}(Ax_t, \Sigma_y)$

Unlike classical point estimation, we target the full posterior distribution $p(x | y_{t-T:t}, t)$ to incorporate uncertainty in the inference process.

Introduction

Adapting the SBI framework Duality Challenges

Posterior estimation

Experiments

Classical SBI vs Data assimilation

$$p(\theta \mid x)$$

$$\frac{p(x \mid \theta)p(\theta)}{p(x)}$$

- x is an observation
- θ is a parameter or a variable of interest

$$p(x \mid y_{t-T:t}, t)$$

$$\frac{p(y_{t-T:t} \mid x, t)p(x \mid t)}{p(y_{t-T:t} \mid t)}$$

- x is a state
- y is an observation
- t is the time index

Challenges

$$p(x \mid y_{t-T:t}, t) = \frac{p(y_{t-T:t} \mid x, t)p(x \mid t)}{p(y_{t-T:t} \mid t)}$$

- Time-varying posterior
- Scale of the problem
- Need proper evaluation of the estimator

Introduction

Adapting the SBI framework

Posterior estimation Estimation methods

Experiments

$$p(x \mid y_{t-T:t}, t) = \frac{p(y_{t-T:t} \mid x, t)p(x \mid t)}{p(y_{t-T:t} \mid t)}$$

$$p(x \mid y_{t-T:t}, t) = \frac{p(y_{t-T:t} \mid x, t)}{p(y_{t-T:t} \mid t)} p(x \mid t)$$

Linked to the likelihood-to-evidence ratio

- Direct posterior estimation
- Neural ratio estimation

$$\overline{p(x \mid y_{t-T:t}, t)} = \frac{p(y_{t-T:t} \mid x, t)}{p(y_{t-T:t} \mid t)} p(x \mid t)$$

Density estimator as posterior surrogate

- Direct posterior estimation
- Neural ratio estimation
- Neural posterior estimation

$$\boxed{x_t \sim p(x \mid y_{t-T:t}, t)} = \frac{p(y_{t-T:t} \mid x, t)}{p(y_{t-T:t} \mid t)} p(x \mid t)$$

Use SDE to reconstruct samples by estimating $\nabla_{x(\tau)} \log p(x(\tau) \mid y_{t-T:t}, t)$

- Direct posterior estimation
- Neural ratio estimation
- Neural posterior estimation
- Posterior score estimation
- Composed score estimation

Introduction

Adapting the SBI framework

Posterior estimation

Experiments Evaluation techniques Results

Simulators

Chaotic systems

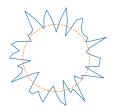


Figure 1: 1D - Lorenz96

Used as a toy problem to benchmark different estimators. We gradually increase the problem scale from 8 to 256 nodes.

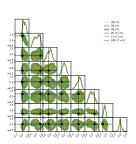
Figure 2: 2D - Turbulent flows

Used to push the scaling of our methods at much higher dimensions. This system is more physically realistic. We scale to 2048 nodes.

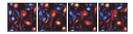
	Comparison	Density	Scale	Time	Interpretation
Loss					
Corner					
Qualitative					
Discriminator					

	2D		
Size N	2048		
MAF $(T = 0)$	1095.204 ± 53.896		
MAF $(T = 9)$	1184.298 ± 29.542		
PS $(T = 0)$	0.044 ± 0.002		
PS $(T = 9)$	0.042 ± 0.002		
CS $(T = 0)$	0.050 ± 0.002		

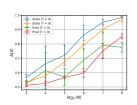
	Comparison	Density	Scale	Time	Interpretation
Loss	×	×	\checkmark	\checkmark	\times
Corner					
Qualitative					
Discriminator					



	Comparison	Density	Scale	Time	Interpretation
Loss	×	×	\checkmark	\checkmark	×
Corner	\checkmark	\checkmark	×	×	\checkmark
Qualitative					
Discriminator					

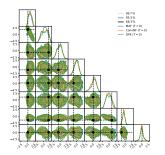


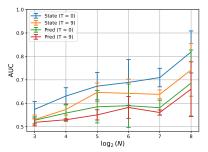
	Comparison	Density	Scale	Time	Interpretation
Loss	×	×	\checkmark	\checkmark	\times
Corner	\checkmark	\checkmark	×	×	\checkmark
Qualitative	\checkmark	×	\checkmark	×	\checkmark
Discriminator					

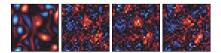


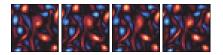
	Comparison	Density	Scale	Time	Interpretation
Loss	×	×	\checkmark	\checkmark	×
Corner	\checkmark	\checkmark	×	×	\checkmark
Qualitative	\checkmark	×	\checkmark	×	\checkmark
Discriminator	\checkmark	×	\checkmark	\checkmark	×

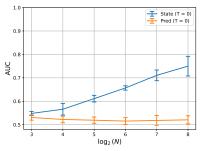
Results











Introduction

Adapting the SBI framework

Posterior estimation

Experiments

Discussion

- We have to incorporate as much information as we have access to in our estimators.
- Convolutional architectures are preferred for good scaling. They are relevant regarding the data structure.
- Score-based models are promising despite they have certain defects.
- Convolutional flows must be further tested.
- It is of interest to study the impact of the time embedding.
- How can we adapt those methods to real-world scenarios with potential misspecified models ?

Any questions ?